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1. Introduction

Neutron scattering has proven to be an ex-
tremely valuable tool for studying a wide variety of
dynamical processes in solids. This is because the
energy of thermal neutrons is comparable to the
energies of many elementary excitations in con-
densed matter while their wavelength is compara-
ble to the interatomic distances. This allows one to
simultaneously obtain information on the time
scale and the geometry of the dynamical process
under study; a feature which is unmatched by any
other technique [1-6]. An important time scale for
the investigation of dynamical phenomena such as
diffusion, molecular reorientations and molecular
tunneling is i0' to 10- s, the regime of ultrahigh
resolution inelastic neutron scattering. The first
neutron scattering instrument to operate in this
range was a backscattering spectrometer built at
the Munich reactor around 1970 which had an en-
ergy resolution of 0.425 peV [7]. In the next section
we describe how this excellent energy resolution is
obtained and give a schematic description of a
backscattering spectrometer. We also describe the

spin-echo spectrometer which was first proposed in
1972 [8]. The following section describes the basic
theory and gives examples of the use of quasielastic
scattering to determine both the time scale and
spatial character of diffusion and molecular reori-
entations. We then go on to discuss rotational tun-
neling and show how neutron scattering
measurements can yield detailed information on
the orientational potential felt by molecules in con-
densed systems. The final section describes the
conceptual design of the backscattering spectrome-
ter to be built in the CNRF at NIST and the basic
design goals for a spin-echo spectrometer.

2. Fundamentals

2.1 Types of Instruments
2.1.1 Backscattering A neutron backscatter-

ing spectrometer is closely related to the triple axis
spectrometer [9] shown schematically in Fig. 1. In
both types of instruments, a "white" beam of neu-
trons impinges on a monochromator crystal which
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not perfectly collimated so that the energy resolu-
tion in backscattering is actually given by [7]

analyzer

8E 8d 1 (2)

sample

Triple axis spectrometer

neutron
source

/ ample I
sample monochromator

Backscattering spectrometer

analyzer

Fig. 1. Schematic diagrams showing the relationship between a
triple-axis spectrometer and a backscattering spectrometer.
Note that the term "backscattering" refers to the scattering
from the monochromator and analyzer crystals and not from the
sample.

selects a given neutron wavelength by Bragg diffrac-
tion. The resulting monochromatic neutrons then
scatter from the sample, possibly gaining or losing
energy in the process. The energies of the scattered
neutrons are determined by Bragg diffraction from
an analyzer crystal. The excellent energy resolution
is obtained by taking the triple-axis instrument to its
extreme limit, i.e., scattering the neutrons through
an angle of 180° at both the monochromator and
analyzer crystals. The energy resolution BE for a
single Bragg reflection can be found by differentiat-
ing Bragg's law. One then obtains

BE5 2 8dE = -- +2cotO8O, (1)

where 8d and d are the spread and value of the d
spacing of the particular lattice planes used for
monochromating or analyzing the neutron energy
E, 0 is 1/2 the scattering angle, and 80 is the angular
spread of the neutrons. For a backscattering instru-
ment the second term is zero since 0 is 90°. Thus the
resolution is determined by Ad/d, which for perfect
crystals is given by the Darwin width which is
roughly on the order of 10'. Of course the beam is

Thus, using the backscattering geometry for both
the monochromator and analyzer, can result in
energy resolutions o0.l ,ueV.

There are obvious technical difficulties inherent
in the backscattering geometry. For instance one
cannot simply scan energy by changing the scatter-
ing angle of the monochromator or analyzer since to
do so would result in moving away from the
backscattering condition. This is overcome by
changing the incident energy, Ei, by either Doppler
shifting the incident neutrons by rapidly moving the
monochromator crystals or by changing the d-
spacing of the monochromator crystal as a function
of time using thermal expansion. There are several
other difficulties including the low intensity and the
geometry of the sample detector-area which will be
discussed later in this article where the plans for the
NIST cold-neutron backscattering instrument are
described in detail.

2.1.2 The Neutron Spin Echo The NSE tech-
nique [8] uses the Larmor precession of the neutron
spin to measure the change in the energy of the
neutron upon scattering from some dynamical pro-
cess in condensed matter. The idea is to make po-
larized neutrons precess in "very" uniform opposite
magnetic fields before and after the sample so that
those having slightly different wavelengths end up
with the same spin orientation at the analyzer posi-
tion. This allows the realization of excellent energy
resolutions (•51 pLeV) using typical (i.e., broad)
neutron wavelength distributions. As indicated in
Fig. 2, cold neutrons are first polarized, then made
to precess in very uniform magnetic fields in one di-
rection before the sample and in the other direction
after the sample and finally their spin orientations
are analyzed to obtain the angular shift introduced
by the sample on the spin orientation. This angular
shift ca is proportional to the applied magnetic field
H, to the precession length L and to the energy shift
during scattering hX =Ef -Ei:

a = [yh 2 (/m)" 2 ] hA 3HL, (3)

where y, m, h and A are the gyromagnetic constant,
the neutron mass, Planck's constant, and the neu-
tron wavelength, respectively. The analyzer picks up
the projection of the magnetic moment along a well
defined direction so that the detected neutron
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positionr at time t. Thus when devising a model of
a diffusional process, it is only necessary to con-
sider the motion of a single atom and not how the
motion of that atom is correlated with the motions
of other atoms in the system. Another important
way of expressing Sinc(Q, t) is in terms of the inter-
mediate scattering function I(Q, t)

Sinc(Q, oj) = f I(Q, t)ei-dt,

Detector

Fig. 2. Schematic diagram of a spin-echo spectrometer.

intensity is proportional to cos(a) properly weight-
ed over the normal modes distribution S(Qo).
The measured intensity is therefore given by the
cosine Fourier transform of the dynamic structure
factor S (Q, w) [6]:

where I(Q,t) is the space Fourier transform of
G#(r,t) and is the quantity measured by the spin-
echo technique.

In order to understand qualitatively how diffu-
sion is manifested in a neutron scattering experi-
ment, we will consider some simple models which
display all of the basic features of more complex
models. (For a more detailed discussion of the
models presented here and for a far wider assort-
ment of models see [5]). First consider simple dif-
fusion which is governed by Fick's law

I(Q,t)=fdo)S(Q, w) cos(a), (4)

where the Fourier variable is t =[yh3 /2(rn )112]

A3 HL. In order to scan time, the magnetic field H
is varied.

The main components of an NSE instrument
[10,11] (see Fig. 2) are the supermirrors to polarize
and analyze the neutron spin direction, the coils to
create very uniform magnetic fields (8H/H - 10-5)
and other conventional neutron scattering compo-
nents (velocity selector to monochromate, slits to
collimate and a detector to count scattered neu-
trons). Flippers are used to prepare the neutron
spin direction before, and after the two precession
coils by rotating its direction.

2.2 Quasielastic Neutron Scattering
2.2.1 Basic Theory In this section we first out-

line basic features of quasielastic neutron scatter-
ing and then proceed to illustrate these points with
various experimental applications. To date, most
quasielastic neutron scattering experiments have
been performed using incoherent scattering [6],
due to the simpler interpretation in terms of
specific microscopic models. This is because the in-
coherent scattering function Sinc(Q, c,) measured by
the backscattering spectrometer is the space and
time Fourier transform of the self-correlation func-
tion Gs(r,t) which represents the probability that a
particle which was at the origin at time t = 0 is at

ap(r't) =DV2 p(rt),
at (6)

where p(r,t) is the particle density at position r at
time t and D is the diffusion constant. A solution of
this equation is given by a self-correlation function
of the form

G , t) = exp( -r 2 /4Dt )
G5(rt)= (47rDt) 31 2 '

(7)

where we have assumed that the times of interest
are long enough that the motion is truly diffusive,
i.e., much longer than the time between collisions.
Then the space Fourier transform of Eq. (6) yields
the intermediate scattering function

I(Qt)= exp(-Q2 Dt)

shown in Fig. 3a.
Since this represents an

time, the time Fourier
Lorentzian lineshape

(8)

exponential decay in
transform yields a

Si 0(Q, ) 1 DQ2
(9)

which is shown in Fig. 3b. Note that this expression
peaks at X = 0 and has an energy width (FWHM) r
which is given by
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long-range diffusion

time

0
Energy

Fig. 3. a) Intermediate scattering function of time at a particu-
lar value of the scattering vector Q.b) Scattering function for
long-range translational diffusion as a function of energy at a
particular Q. This is the Fourier transform of the intermediate
scattering function.

F=2DQ2 .

0 2 4 6 8

Q

Fig. 4. Full width at half maximum (FWHM) for Fickian (con-
tinuous) diffusion (dotted line) and for the Chudley-Elliott
model of translational jump diffusion for 1 A jumps (solid line).
Note that they are identical at low Q which means that the
macroscopic diffusion constants are identical.

can be used to represent the particle's motion. Here
p(r,t) is the probability of finding the particle at
position r at time, t, X is the time between jumps and
the sum is taken over the nearest neighbor sites
at distances d. Using the boundary condition
p(r,O)=&(r) makes p(rt) and G#(r,t) equivalent,
and then the Fourier transform of the previous
equation yields

aI(Qt) - _(Qt) 1
Olt - n (i1~eQr (12)

As for the case of pure diffusive motion, this has an
exponential solution of the form

(10)

The width of the peak is thus proportional to both
the diffusion constant and the square of the scatter-
ing vector as shown in Fig. 4.

Chudley and Elliott [12] generalized this picture
to describe jump diffusion in solids by assuming that
the jump motion is random, that the jumps can be
considered instantaneous, and that the available
lattice sites form a Bravais lattice. Then the simple
rate equation

I(Qt) = exp( JQt ), (13)

where

(14)AMQ = n 2 sin2 

Thus the scattering function again has
lineshape given by

ap(rtt) 1 I n
at > [p (r + i,t) -p(r, t)], (11) Sinc(Q, CO) = f(Q)/+TV17 (f(Q/)IT + CO"
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which has an energy width of

F=2f(Q). (16)

The most important thing to note is that r oscil-
lates in Q with the periodicity determined by the
inverse of the jump vectors d. Thus it is possible to
determine the microscopic diffusion mechanism via
the dependence of the width of the quasielastic
scattering on the scattering vector. Another inter-
esting feature is that for small values of Q, rX Q21
r. One can then connect this expression to the
macroscopic diffusion constant since D oX 1/T and
F=2DQ 2 for Fickian diffusion. Fig. 4 compares
F(Q) for a powder averaged Chudley-Elliott model
assuming 1 A jumps with that of Fickian diffusion
for identical values of the diffusion constant. The
possibility of extracting the macroscopic diffusion
constant from the small Q region makes it possible
to compare quasielastic neutron scattering results
with those obtained using other methods and to
discern the activation energy Eo via the Arrhenius
law

D =Do exp ( k-E). (17)

For rotational motions, one is typically con-
cerned with molecules or ions which contain more
than one hydrogen atom. Thus it should be reiter-
ated that to describe the motion, only a single atom
need be considered for an incoherent scatterer,
since the motions of other atoms are irrelevant
even if they are coupled to that of the first [6]. The
formalism for rotational motions is thus the same
as for diffusion in which a single particle is con-
fined to a limited region of space. First let us turn
our attention to the case in which an atom under-
goes jump diffusion on a limited number of sites
which lie on a circle of diameter R. Consider func-
tions fi(t) which represent the probability that a
particular atom is at site i at time t. These func-
tions may be obtained using a rate equation similar
to Eq. (10)

1Q) 1 1fi(t)+' Do,
dt Ir Ir jo1

(19)

(20)f2 =2 (1-exp-2),

where use has been made of the relations fi(0) = 1,
f2(0) = 0 and fi +f2= 1. The intermediate scattering
function is then given by

I(Q, t) = exp( t 

[1-exp (iQ R)] +2 [1 + exp (iQ -R)], (21)

where R is the vector between positions 0 and 1.
Note that this equation has been divided into two
parts. The first decays exponentially in time and
thus leads to a Lorentzian component in the
quasielastic scattering while the second is indepen-
dent of time and, therefore, gives a 8-function in
energy. This lineshape is displayed in Fig. 5. After
performing a three-dimensional powder average
and a Fourier transform, one obtains the scattering
function

Sin:(Q, )) =J [ (1 + sin(QR)>( ) +

( 1 QR ) (2)2+(2WTo)2]

3
0/
Cd

(18)

where X is the time between jumps and the sum is
taken over all orientations from which the
molecule can rotate directly to orientation i. For
simplicity we will consider the case of two possible
equivalent molecular orientations corresponding,
for example, to a water molecule undergoing
twofold jumps about its C2 symmetry axis. Then Eq.
(17) has the solutions

(22)

0
Energy

Fig. 5. Scattering function as a function of energy at a particu-
lar Q for diffusion confined to a particular region of space (e.g.,
rotational jump diffusion). Note the narrow component indica-
tive of a process in which the atom has a finite probability of be-
ing at its initial position at infinite time.
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Note that for rotational jump diffusion, the
Lorentzian component has a linewidth which is
constant in Q, but that the intensity oscillates with
the inverse periodicity of the jump length. The in-
tensity of the 8-function component, termed the
elastic incoherent structure factor or EISF, oscil-
lates with the same period but out of phase with
respect to the intensity of the Lorentzian compo-
nent. Thus, characteristic differences exist in the
scattering from rotational jump diffusion compared
to translational jump diffusion where the lineshape
is a single Lorentzian. It is worth pointing out that
the 8-function component arises from the fact that
at infinite time, the particle has a finite probability
of being in its original position. Thus this 8-func-
tion component is a characteristic feature of any
diffusion process which is confined to a specific re-
gion of space.

The microscopic rotational mechanism need not
be as well-characterized as it was for this simple
example. For instance, if the static potential fluctu-
ates due to phonons, the idea of a single jump fre-
quency needs to be replaced by a distribution of
residence times. This situation is called rotational
diffusion since the self-correlation function obeys
the diffusion equation if the residence time is
short. Then for uniaxial rotational diffusion, it can
be shown that

S nc (Q,W) =jO2 (QR sinO)B(,iw)+

2 L.] 2 sin F1+wQri 2
i=l

(23)

fore the EISF only drops to 1/2, but for the rota-
tional diffusion model the EISF eventually drops to
zero since there are infinitely many possible sites
on a circle. In principle it is possible to tell if a
particle is undergoing rotational jumps or continu-
ous rotational diffusion on this basis alone. In prac-
tice one usually cannot reach Q's which are high
enough to distinguish continuous diffusion from
discrete many-fold jumps.

=X0.6 2

0.2 * 

0.0 2.5 5.0 7.5 10.0 12.5
QR

Fig. 6. The elastic incoherent structure factor (EISF) for uni-
axial twofold rotational jumps (solid line) and for uniaxial rota-
tional diffusion (dotted line) as a function of QR where R is the
diameter of the circle on which the motion occurs.

In polymer research the intermediate scattering
function I(Qt) is often expressed as the density-
density correlation between monomers:

Np N
I(Q~t)=(1INpN2) I I

aP i

(24)

where R is the diameter of circle on which the dif-
fusion is occurring, 0 is the angle between the axis
of rotation and Q and [i =i2 DR with DR represent-
ing the rotational diffusion constant. Thus, the
scattering function can still be divided into a com-
pletely elastic component and a broadened compo-
nent. However, in this case, the broadened
component is a sum of many different Lorentzians
of varying widths. Therefore, the total width of this
component may vary somewhat in Q due to the
trade-off in intensity between the various Lorentzi-
ans. The EISF's of the two models discussed here
are displayed in Fig. 6. Note that for the case of
twofold jumps, the EISF decays to 1/2 at large
values of Q. This is simply a manifestation of the
fact that the EISF represents the Fourier trans-
form of the self-correlation function for infinite
times. For a two-site model the probability is 0.5
that the particle has its original orientation, there-

where rpj (t) is the position of monomerj in polymer
,1 at time t, Np and N are the total number of poly-
mers and the number of monomers per polymer
chain respectively. Its initial value is the elastic (also
called static) structure factor: S (Q,0) =I(Q, t = 0).
Fig. 7 shows a typical set of neutron spin echo
(NSE) data taken by Ewen [13] from polydimethyl-
siloxane (PMDS) in a dilute solution of deuterated
bromobenzene at the Theta temperature (84 0C).
Note that these curves exhibit the simple exponen-
tial behaviour displayed schematically in Fig. 3a.
Furthermore, Eq. (8) shows that the decay of I(Qt)
increases with Q2 which is also observed in Fig. 7.

The initial slope of I(Qt) is called the first cumu-
lant:

r(Q) = Lim [aI (Q,t)/at]IS (Q, 0),
t-~0

(25)
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Fig. 7. Neutron spin echo spectra from polydimethylsiloxane in
a dilute solution of deuterated bromobenzene at the theta tem-
perature (84 0C) [13].

which is identical to the energy width of S(Q,C))
and which can readily be modelled for various
polymer systems. Many approaches are used: the
Kirkwood-Riseman (KR) equation for polymer so-
lutions, the dynamic Random Phase Approxima-
tion [14] (RPA) for polymer melts, scaling concepts
and renormalization group ideas for both, etc.

The precision of extracting F(Q) is greatly im-
proved by introducing a shape function [15, 16]

f(QIr)=I(Qt)/S(Q, 0),

where the product is taken over the various rota-
tional and translational motions and

ivib(Qat) = exp( -Q < pLl >) (28)

is simply the Debye-Waller factor. This results in a
scattering function which is simply the convolution
of the scattering functions of the individual mo-
tions. Thus if the motions occur on somewhat dif-
ferent time scales, the various components can
often be separated simply because they have differ-
ent widths (Fig. 8). This is possible because mo-
tions which are slow on the scale of the resolution
will appear as an elastic component and those
which are fast compared to the resolution will ap-
pear as an essentially flat background. In order to
observe motions occurring on different time scales
usually means using different instruments with dif-
ferent dynamical windows or at least adjusting the
resolution on a given instrument. Thus it is often
important to have a wide dynamical range available
in order to completely characterize a diffusional
process.

1

(26) ;

where time is rescaled by defining a dimensionless
variable T=F(Q)t. This function depends only on
QRg or Qa in the small or high Q regions (where Rg
is the radius of gyration and a is the statistical seg-
ment length). Moreover, it is independent of Q in
the intermediate Q region which means that the
scattering function follows a universal shape (the
intermediate Q region is defined as lIRg < Q < 1/a ).
An iterative procedure using the shape function
f(Q,T) yields values for F(Q) that are more precise
than the direct method based on simply extracting
F(Q) as the slope of I(Q.t) at zero time.

Many times a system will display more than one
type of diffusive motion; then if the various mo-
tions are uncoupled, the intermediate scattering
function is given by the product of the individual
intermediate scattering functions

I (Q,t)= I vi(Q,t) LI(Qt), (27)

Background

Quasielastic

Elastic

1/kT

Fig. 8. Schematic Arrhenius plots showing that a motion
occurring on a particular time scale can give rise to scattering
which appears elastic if the instrumental resolution is too
coarse, while it may appear as a flat background if the resolu-
tion is too fine. This indicates that motions which occur on
different time scales can be separated simply by using instru-
ments having different dynamical ranges or by changing the
resolution on a given instrument.
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2.2.2 Applications Li Difiifsion in LiC 6 . LiC6
is a stage 1 graphite intercalation compound in
which the Li atoms undergo a transition from an
ordered, commensurate x/3 x x/3 R30' phase to a
disordered, commensurate lattice gas at a tempera-
ture of 715 K [17]. Measurements of the quasielas-
tic scattering due to Li diffusion were made by
Magerl, Zabel, and Anderson [18] using a cold
neutron backscattering spectrometer below the
transition and a time of flight instrument above it.
Figure 9 shows the quasielastic widths as a function
of Q at 660 and 720 K. These energy widths were
determined by fitting the data taken at a particular
value of the scattering vector to a Lorenztian con-
voluted with the instrumental resolution. The solid
line in Fig. 9a is a fit to a model which assumes that
the diffusion occurs by instantaneous jumps be-
tween the nearest Li sites on the ordered sublattice
as shown by the vector e2 in the insert. For the
much more rapid Li diffusion in the lattice gas
phase, the data can be fit assuming that the jumps
occur between the nearest neighbor commensurate
sites shown by vector el in the insert. In addition to
the diffusional mechanism these fits yield values of
the diffusion constant of 1 x 10-' mm2/s and
24 x 10- mm2 /s at 660 and 720 K, respectively.
From the temperature dependence of the diffusion
constant in the ordered phase one obtains an acti-
vation energy of (1.0 + 0.3)eV. These results
demonstrate the ability to "tune in" different diffu-
sional processes with different neutron scattering
spectrometers which operate in different dynamical
ranges.

Self-Diffusion in bcc 1-Titanium. When plotted
as a function of TI/T, (where T5, is the melting
temperature) self diffusion in the group IVb metals
(Ti, Zr, and Hf) is orders of magnitude faster than
for other bcc metals. In order to determine the
diffusional mechanism Vogl et al. [19,20] have per-
formed an exquisite measurement of the quasielas-
tic scattering due to self diffusion in a single crystal
of bcc Ti. A typical spectrum, along with a fit as-
suming a single Lorentzian convoluted with the ex-
perimental resolution is shown in Fig. 10. Figure 11
shows the Q dependence of the widths for two tem-
peratures and several different crystal orientations.
The solid lines represent fits to an encounter model
of 1/2[111]NN jumps. In a model of this type only
the jump vector between the original and final sites
is relevant. The details of what happens in between
are forgotten. The dashed lines in Fig. 11 represent

an encounter model description of [100]NN jumps,
while the dotted and dashed lines represent stan-
dard descriptions of tetrahedral and octahedral in-
terstitial jumps respectively. Clearly this data
reveals that the self diffusion of Ti in 13-Ti is domi-
nated by 1/2[111] jumps into nearest neighbor va-
cancies, however a small additional fraction of
jumps into second nearest neighbor positions is also
consistent with the data.
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Fig. 9. Linewidths (FWHM) of the quasielastic neutron spectra
measured for LiC6. a) 660 K (below the Li sublattice melting
temperature). b) 720 K (above the Li sublattice melting temper-
ature). The inset shows the jump vectors used to calculate the
solid lines in both plots. Above the transition, Li jumps to
nearest neighbor sites while below jumps occur to sites form the
\/3 x \/3 R30° sublattice [18].
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0
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NEUTRON ENERGY TRANSFER (peV)

Fig. 10. Quasielastic spectra from bcc Ti at Q = 1.6 A-' and

T = 1530 'C. The solid line is a fit to a single Lorentzian convo-

luted with the instrumental resolution. The dashed line repre-

sents the measured resolution [19,20].

Reorientations of Benzene. The previous two

examples described systems in which the diffusing
atoms (Li or Ti) undergo long-range translational
motion so that the scattering law consists of a single
Lorentzian component. As shown earlier, if the

quasielastic scattering is due to rotational jumps,

the scattering law is the sum of a 8-function and one

or more Lorentzians. An interesting example of this

type of system is crystalline benzene which has re-

cently been studied using cold neutron backscatter-
ing methods by Fujara et al. [21]. The EISF

determined at 210 K by fitting the data to a model

of random 60° jumps is shown in Fig. 12. The solid

line is a calculation of the EISF assuming sixfold ro-

tational jumps and that the radius of the ring of H

atoms is 2.479 A. The small disagreement at low Q

can be attributed to multiple scattering effects. At-

tempts were also made to fit the data to a model

which allowed for 120° and 1800 jumps in addition

to 60° jumps with equal probabilities. However, the

EISF determined using this model was consistently
larger than expected for sixfold rotations. Thus,

these data show that benzene rotates principally by
60° jumps with a correlation time of approximately
30 ns at 210 K. In addition the temperature depen-

dence of the correlation time was found to be con-

sistent with an activation energy of 182 meV

determined using NMR.

Fig. 11. Linewidths at the quasielastic neutron spectra of bcc Ti

at 1460 'C (left) and 1530 'C (right) as a function of Q. Left:

scattering plane parallel to the (001) crystal plane. Right: scat-

tering plane parallel to the (012) crystal plane. a denotes'a rota-

tion of the sample around an axis perpendicular to the scattering

plane and is defined as the angle between the incident neutrons

and the < 100> crystal direction. The model calculations are:

solid line, 1/2[111] nearest neighbor jumps; dashed line, [100]

2nd nearest neighbor jumps; dotted line, tetrahedral interstitial

jumps [19,20].

Dilute and Semidilute Polymer Solutions. In dilute

(monodisperse) polymer solutions, and at the small

Q limit (QELS), F(Q) shows a characteristic Q2

dependence seen in Eq. [9]:

Lim I(Q) = Q2 D, (29)

which describes the overall diffusion of the whole
polymer chain with a diffusion coefficient D. At in-

termediate values of Q (where scattering is probing
length scales smaller than the chain but larger than

the monomer size), a Q3 dependence of F(Q) char-

acterizes the Zimm (internal) Brownian diffusive

modes [15,22]:
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Fig. 12. The elastic incoherent structure factor obtained by a
model in which the benzene molecule undergoes rotational
jumps of 600 (top) and by a model in which 600, 120°, and 180°
jumps are equally probable (bottom). The neutron scattering
data clearly demonstrates that 600 jumps are the predominant
rotational mechanism. The disagreement between the data and
the model at small Q's is due to multiple scattering effects [21].

two characteristic relaxation times are observed
[27,28]: a slow mode representing cooperative dif-
fusion and a fast mode representing inter-diffusion.
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Fig. 13. Quasielastic light scattering from polystyrene in vari-
ous solvents showing the crossover from the Q 2 to the Q 3 scal-
ing law (small to intermediate Q for the first cumulant) [16.]

1 0

r(Q) = C (kBT/77()Q 3, (30)

where kBT is the solution temperature in energy
units, 77o is the solvent viscosity and C is a numeri-
cal constant that depends on solvent quality and
preaveraging of the hydrodynamic interaction (for
Theta solvents, C = 1/67r or C = 1/16 depending on
whether hydrodynamic interactions are preaver-
aged or not). The Q2 to Q3 transition has been
observed [16] for polystyrene in various solvents
(see Fig. 13). Moreover, at high Q, diffusion of a
single monomer dominates and the Q2 law is recov-
ered again. This last transition (Q 3 to Q 2 ) involves
scattering vectors that can be reached only with
NSE [23,24] as shown in Fig. 14.

In semidilute solutions (where individual poly-
mer chains start overlapping each other) hydrody-
namic interactions between monomers start being
screened so that a Rouse description [25] of poly-
mer dynamics is more appropriate. Moreover, ex-
cluded volume effects remain important only
between entanglement points so that monomers
that are topologically farther apart do not feel each
other even if they belong to the same chain. Scaling
ideas based on concentration and temperature
"blobs" [26] have been successful in describing
both static and dynamic properties of polymer solu-
tions. In the case of a three-component polymer
system (two polymers and a solvent for example),

to
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L-4

O.1 .
0.1

qa
10

Fig. 14. Neutron spin echo spectra from polystyrene in CS2
showing the crossover from the Q 3 to the Q 2 scaling law (inter-
mediate to high Q) for the first cumulant.

Concentrated Polymer Solutions and Melts. In
contrast to the case of dilute solutions, concen-
trated polymer solutions and polymer melt dynam-
ics are dominated by interchain correlations. At a
length scale smaller than the average distance be-
tween two entanglement points, the Rouse model
(which neglects hydrodynamic interactions)
describes chain dynamics well. The Q3 power law
dependence of F(Q) in the intermediate Q region
becomes a Q4 dependence [29]. However, at longer
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scale lengths, entanglements constrain the chain
motion to occur in a "tube" created by surrounding
chains. This is the reptation idea [30,31] whereby
polymer chains perform a snake like diffusive mo-
tion by which they renew their configurations. Rep-
tation corresponds to the slow mode (that was
mentioned for semidilute solutions) at high Q. In
crosslinked gels, for example, this slow mode disap-
pears so that only fast modes describing local
monomer motions remain. Tests of the reptation
idea have brought about a better understanding of
the viscoelastic behavior of polymer systems.

A dynamic Random Phase Approximation
(RPA) approach [32,33] has been used to under-
stand the effect of monomer interactions on the
various diffusive normal modes in polymer multi-
component melts. Within this framework, the in-
termediate scattering function I(Qt) and its initial
slope F(Q) can be related to their bare (i.e., when
no interactions are present) counterparts. This ap-
proach has permitted the sorting out of the various
diffusion coefficients (self, mutual, inter-, coopera-
tive, etc.) that are measured by various techniques
in various experimental (concentration, molecular
weight) conditions. Self and mutual diffusion coef-
ficients are measured in dilute polymer solutions
and correspond to the diffusion of a single chain
and to that of many chains respectively. Inter-diffu-
sion and cooperative diffusion characterize ternary
polymer systems comprising, for example, concen-
trated solutions of two polymers A and B and cor-
respond to the fast and slow modes when taken at
the proper limits. The interdiffusion coefficient
represents the diffusion of A relative to B while the
cooperative diffusion coefficient describes the dif-
fusion of the polymers (both of A and B) in the
solvent. Interdiffusion for instance is the dominant
mode in phase decomposing blends. It is interest-
ing to note [28] that for the case of a diblock co-
polymer in solution, the first cumulant for the
interdiffusion mode remains finite at the Q --0
limit (contrary to the definition of a diffusive
mode). This is reminiscent of the "optical mode" in
multilayer crystalline solids keeping in mind, of
course, that the interdiffusion mode is nonpropa-
gating.

Effects of temperature, concentration, molecular
weight and chain stiffness on the dynamics of poly-
mer solutions have been investigated. The molecu-
lar weight dependence of the mutual diffusion
coefficient changes from N -/2 with hydrodynamic
interactions (dilute solutions) to N-' in concen-
trated solutions of short chains in long chains
(Rouse dynamics) to N 2 for melts of long chains

(where reptation dominates). Recall that N is the
number of monomers per polymer chain. The NSE
technique is also particularly useful in observing
polymer chain stiffness [23,34] and its effects on
diffusion at intermediate and high Q values.

Equilibrating Polymer Blends. The previous sec-
tions described the dynamics of polymer systems
that are in thermal equilibrium. The observed
(Zimm, Rouse Reptation) modes are due to Brow-
nian diffusion in solutions and in melts. This sec-
tion, however, briefly describes "real time"
dynamics of polymer systems following gradients in
temperature [35] (such as across phase transitions)
or in concentrations [36] (two films are superposed
face-to-face and allowed to diffuse into each other
upon heating). In the first case, the crossing of the
phase boundary could be towards equilibration
(from two-phase into the miscible region) or to-
wards growth (the other way around). The time
scales involved are ideally suited for investigation
by quasielastic scattering methods.

The intermediate scattering function I(Q.t)
described in the previous sections involves time
correlations of the fluctuating density p(Qt) (in
Fourier space):

I(Q, t) = (1INpN2) <p( - Q, O)p(Q,t)>. (31)

For equilibration/growth processes, what is mea-
sured instead is the time evolution of p(Qt):

S, (Q)= (1NpN 2) <I p(Q,t)1 2 >. (32)

The Cahn-Hilliard-Cook theory [37,38] describes
small deviations from equilibrium (early stage of
spinodal decomposition) and can predict decay
rates R (Q) of the time dependent structure factor:

S,(Q) = [S(,(Q) -S(Q)]exp[-2R(Q)t]+

S(Q). (33)

Here, SO(Q) and S.(Q) are the initial and final
(Virtual) values of the structure factor S. (Q).
When the concentration fluctuations are small,
R (Q) can be simply expressed in terms of the mo-
bility M, the interfacial free energy coefficient K
and the inter-diffusion coefficient Dint:

R(Q)=Q2 Dint-2Q4MK- (34)

These temperature jump experiments [35] are ac-
tually a means to measure Din,. Two main theories
describe the molecular weight dependence of Din,:
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a "slow mode" theory [39,40] based on the incom-
pressibility assumption and a "fast mode" theory
[41] assuming vacancies present in the relaxing
blend. The fast mode theory predicts an additive
superposition of the mobilities of each component
while the slow mode theory predicts an additivity
law for the inverse of the mobilities. This is a new
area of research (with ongoing controversies)
where quasielastic scattering methods are the main
research tools.

2.3 Tunneling Spectroscopy
2.3.1 Basic Theory Perhaps the phenomena

most studied using cold neutron backscattering is
the rotational tunneling of small molecules and
polyatomic ions in solids. In order to understand
the origin of this effect consider a molecule in an
m-fold potential 'm(0) given by

(35)

capable of yielding extremely detailed information
on interatomic potentials in solids.

100

75

Q)

til

where V0 is the height of the barrier and 0 is the
rotational angle. The Schr6dinger equation is then
given by

[-.B o2 + Vm (0)] in =En./in

50

25

(36)

where B = h/2 (I is the moment of inertia), 41,, is
the wavefunction, and En are the energy, levels. Fig-
ure 15 shows the energy levels which are solutions
to this equation as a function of the barrier height
V0 assuming a threefold potential and that the ro-
tating species is a methyl (CH3) group. Here the
solid lines represent singly degenerate levels having
A symmetry while the dashed lines correspond to
doubly degenerate solutions of E symmetry. Basi-
cally there are three regimes. The first is where the
barrier is zero which corresponds to free quantum
rotors characterized by doubly degenerate levels
having energies Ej oXj2 where j is the rotational
quantum number. The second is the limit of large
barriers where the molecule or ion undergoes har-
monic librations which are characterized by triply
degenerate levels with En x (n + 1/2). Here n is the
librational quantum number. Perhaps the most in-
teresting region is that between these two extremes
which is characterized by the tunnel splitting of the
librational ground state and of the excited states
resulting from the overlap of the wavefunctions
shown schematically in Fig. 16. This splitting is
quite sensitive to V0 since the overlap of the wave-
functions depends exponentially on the barrier.
This approximate exponential dependence of the
ground state tunnel splitting is shown for both CH3
and CD3 in Fig. 17. Thus, tunneling spectroscopy is

Ok
0 100 200

Barrier (meV)
Fig. 15. Energy levels as a function of 0 the barrier for methyl
groups in a threefold cosine potential. The dashed lines repre-
sent singly degenerate states (A symmetry) while the solid lines
are doubly degenerate states (E symmetry).

2.3.2 Applications Nitromethane. One of the
most interesting applications of tunneling spec-
troscopy is the determination of the rotational
potential felt by the methyl group in solid ni-
tromethane (CH3 NO2). Nitromethane is an ideal
candidate for such studies for several reasons. First
the internal barrier to rotation is very small. Thus in
the solid phase, intermolecular interactions will
dominate the rotational potential. In addition, the
molecule is a simple one and will display only one-
dimensional rotation. Finally, diffraction studies
have shown that the space group of the crystalline
material is P2,2121 which has only one molecule in
the asymmetric unit [42]. Therefore, all methyl
groups have the same environment and there is only
one rotational potential to be determined. Diffrac-
tion studies have also demonstrated that no phase
transitions occur between 4.2 K and the melting
point of 244.7 K [42].

100

V. (0) = V0 [I - Cos(M 0)],
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Fig. 16. Schematic diagram of the energy levels in a threefold
cosine potential. V(I is tke barrier and EA is the classical activa-
tion energy. Also shown are schematic wavefunctions in the
ground state and transitions from the first excited state.
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Fig. 17. Semilogarithmic plot of the ground state tunnel split-
ting of a methyl group in a threefold cosine potential versus the
barrier to rotation. The solid line is for a hydrogenated methyl
group while the dotted line is for a deuterated one.

The inelastic neutron scattering measurements of
the transitions between the ground state and the
first excited state obtained by Trevino [43] at 4.2 K
are shown for both CH3 NO2 and CD3NO2 in Fig. 18.
From these spectra and from the temperature de-
pendence of these spectra, the transition to the first
excited state could be assigned to the peaks at 6.7
and 5.3 meV for the hydrogenated and the deuter-
ated compounds respectively. Note that these val-
ues do not simply vary as 1/VI which indicates that
the potential is quite anharmonic. Further measure-
ments also revealed a transition to the second
excited state at 17.5 meV for CH3 NO2 and 10.6 for
CD3 NO2 . The most important results for the
characterization of the potential are the measure-
ments of the ground state tunnel splittings for both
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Fig. 18. Inelastic neutron scattering spectra showing the transi-
tion from the ground state to the first excited state in CH3 NO2

(6.7 meV) and CD3NO2 (5.3 meV) [43].

samples performed by Trevino and co-workers
[44,45] which are shown in Fig. 19. Here one ob-
serves clear transitions at 35 and 1.7 peV for the
hydrogenated and deuterated systems, respectively.
Taken together these spectroscopic results are in-
consistent with a simple threefold potential. How-
ever, it was shown by Cavagnat et al. [46] that a
potential of the form

V(O)=V3 [1-cos(30)]+V 6 [1-cos(60+ a)] (37)

would completely describe all of the spectroscopic
results when V3= 25.5 meV, V6 = - 15.5 meV and
8 =300. This potential is shown in Fig. 20 and the
calculated energy levels are given in Table 1. In ad-
dition, these authors showed that a potential of this
form could be obtained by using a simple Lennard-
Jones model to describe the interactions between
the methyl hydrogens and the surrounding lattice
fixed. These calculations indicated that the origin of
the sixfold term in the potential is the repulsive
H-O interaction and the asymmetric location of the
sixfold term with respect to the threefold term is
due to the asymmetric distribution of the, oxygen
atoms with respect to the- equilibrium -distribution
of the methyl groups.

Recently however, Rice and Trevino [47] have
pointed out that the potential produced by this H-O
interaction -does not reproduce the equilibrium
orientation of the methyl group. Guided by the
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Fig. 19. Measurements of the
CD3 NO2 . [45].
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tunnel splitting for CH 3NO2 and

Lennard-Jones (Fig. 21) potential all aspects of
both the spectroscopy and the structure, could be
reproduced. Thus, through the use of a combina-
tion of thermal neutron spectroscopy and diffrac-
tion and cold-neutron spectroscopy a detailed
description of the H-O interaction in nitromethane
has been determined.

-0.03
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! -0.04

-0 .06

-0.08

Fig. 20. Potential determined by Cavagnat et al. [46] which is
consistent with all of the spectroscopic data. The solid lines are
the energy levels for CH3 NO2.

maximum entropy method they were able to show
that by including a small additional wiggle on the

3 4 5 6

R (Angstroms)

Fig. 21. Lennard-Jones H-O potential used by Cavagnat et al.
[47] compared to the Gaussian-corrected Lennard-Jones poten-
tial obtained by Rice and Trevino which reproduces both the
equilibrium orientation of the methyl group and the spec-
troscopy results.
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Table 1. Characteristics of the backscattering spectrometer
being designed for installation in the CNRF

Energy resolution -0.75 [LeV
Maximum energy range - 100 pLeV
Neutron energy 2.08 meV
Q-Range 0.1-1.8 A-
Flux on the sample - 105 neutrons/cm 2 s
Maximum sample size 3 x 3 cm2
Sample-Monochromator distance -2 m
Sample-Analyzer distance -2 m

Methyl Iodide. The pressure dependence of the
tunneling transitions in CH3 I is an excellent demon-
stration of the extreme sensitivity of these excita-
tions to the rotational potential. Like nitromethane,
methyl iodide has only one solid phase with only
one molecule in the asymmetric unit cell. There-
fore, all methyl groups feel the same potential and
only one tunneling line will be observed. The spec-
tra obtained using the backscattering technique are
shown for several different pressures in Fig. 22a
[48,49]. Note that the peaks decrease in energy as
the pressure increases indicating an increase in the
potential barrier. Fig. 22b shows that the ground
state tunnel splitting depends exponentially on the
pressure. This is to be contrasted with the results
obtained for the energy of the transition to the first
excited state shown in Fig. 23. The pressure depen-
dence of this transition is linear and rather weak at
that. Prager and coworkers [48,49] also showed that
these spectra could be described by a potential of
the form

-o
C-

. _

0

3a

3

2

1

0

1 

0
1

0

1

0

-5

V(O) = 2 V3 (1 + cos3O) + 2 V6(1 + cos60), (38)

and that the threefold term accounts for -92
percent of the total barrier, VB = V3 + V6. It is worth
noting that the value of VB determined from these
measurements increases by < 20 percent from am-
bient pressure to 3 kbar while the tunnel splitting
decreases by more than a factor of 2.5 clearly
demonstrating the extreme sensitivity of this tech-
nique to details of the rotational potential.

3. CNRF Instruments

3.1 NIST Backscattering Spectrometer

The cold neutron backscattering spectrometer
(CNBS) which will be located in the CNRF is
shown schematically in Fig. 24, (also see Table 1).
The guide supplying the neutrons will have a cross
sectional area of 6 x 15 cm2 and will have

'V

3

0 5

energy transfer [peV]

2

p [kbar]

Fig. 22. (a) Tunneling spectra in CH3I as a function of

pressure. (b) Semilogarithmic plot of the tunneling energy as a
function of pressure [49].
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Fig. 23. (a) Inelastic neutron scattering spectra of the transi-
tion from the ground state to the first excited state as a function
of pressure. (b) Energy of the transition from the ground state
to the first torsional level as function of pressure [49].

supermirror coatings on the tops and bottoms
while the sides will be coated with 58Ni. The princi-
pal design goal has been to maximize the intensity
of the instrument while maintaining an energy res-
olution of < 1 [ueV. Thus the CNBS will have an
energy resolution more than 10 times better than

that of any instrument which currently exists in the
United States. The first element of the instrument
will be a wavelength selection device, the purpose
of which is to suppress the background. This will
consist of a Be filter, a Bi filter, possibly a velocity
selector similar to that used on the small angle
scattering and possibly a chopper with a duty cycle
of about 1/2 to pulse the beam so that there are no
neutrons striking the phase space chopper (which
will be described in detail below) when neutrons
are being counted in the detector.

The remaining neutrons will then pass through a
converging supermirror guide which will compress
the beam cross section from 6 x 15 cm2 to 3 x 3 cm2.
It is not presently possible to quantify the length or
the angle of convergence of the guide because of
uncertainties in supermirror development; however
it is hoped that an increase in flux of at least a
factor of three will be possible. The neutrons will
then impinge on a phase space transformer [50].
This can result in a substantial increase in neutron
flux at the sample position because there is typi-
cally a substantial mismatch of the angular resolu-
tion of the primary and secondary sides of cold
neutron backscattering instruments. This occurs
because the divergence of the incident beam is lim-
ited by the neutron guide on which the instrument
is installed, while the angular resolution of the sec-
ondary spectrometer is quite low due to the large
area analyzing crystals and the detector geometry.
Therefore it is possible to increase the flux at the
sample position without degrading the energy reso-
lution by increasing the angular divergence of the
incident beam. This will be done to some extent
through the use of the converging supermirror
guide. However, it seems impossible to match the
Q resolution of the primary spectrometer to that of
the secondary spectrometer with current supermir-
ror technology. To overcome this difficulty
Schelten and Alefeld [50] have proposed a neutron
phase space transformation which uses moving mo-
saic crystals to change a well-collimated, white neu-
tron beam into a divergent, nearly monochromatic
one. Physically, this occurs because the slower mov-
ing neutrons are diffracted at higher angles and
therefore, get a "push" from the moving crystal,
while the Bragg condition is satisfied at smaller an-
gles for the faster neutrons causing diffraction to
occur from crystallites moving away from the inci-
dent neutrons thereby reducing their speed.

We have performed Monte Carlo simulations of
this device in order to determine the gain expected
for parameters relevant to the CNBS at NIST. The
beam which emerges from the converging
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NEUTRON BEAM CHOPPER

Fig. 24. Schematic diagram of the CNRF backscattering spectrometer.

supermirror guide will have a divergence 7) approx-
imately twice the critical angle of Ni in the horizon-
tal plane (7h = 20c). For the purposes of this
simulation, the phase space crystal was chosen to
be pyrolytic graphite (d = 3.354 A and Oo= 69.1810)
with a thickness of 5 mm. The incident distribution
of neutrons was taken to be a 65 K Maxwell-
Boltzmann distribution (in accord with measure-
ments of the flux from the cold source) truncated
at 4 A to simulate a Be filter in the incident beam
and at 10 A because wavelengths longer than this
have essentially no probability of being diffracted
by the moving crystal. This distribution was then
multiplied by the square of the incident wavelength
in order to account for the fact that Oc is propor-
tional to the wavelength. The horizontal and verti-
cal mosaics and the velocity of the graphite crystals
were included as input parameters. The reflectivity
of graphite was accounted for with the Bacon-
Lowde equation for diffraction from ideally imper-
fect crystals [51]. This will overestimate the
reflectivity of the deflector crystal resulting in the
simulated gains being somewhat larger than what
one would actually observe. (Note that the reflec-
tivity is a function of the crystal speed. This has
been included.) All of these simulations have been
performed using the assumption that Si (111)

crystals will be used as the monochromator

(A =6.27 A).
Two-dimensional projections of simulated Bragg

reflections from a crystal having an isotropic 10°
mosaic are shown in Fig. 25 for three different
crystal speeds. Here the incident and final k, and ky
values of the diffracted neutrons are represented
by individual dots and the reference values are in-
dicated by the solid lines. Two effects are evident.
The first is that the phase space volume increases
as the crystal velocity increases. This is because the
Bragg reflection takes place at a lower angle in the
Doppler frame. The second effect is that the dif-
fracted beam tilts in phase space as the crystal ve-
locity is changed. This tilt can be optimized so that
the maximum number of neutrons have the correct
energy to be backscattered from a Si (111) crystal.
Note that this does not violate Liouville's theorem
because the orientation, not the volume, of the fi-
nal phase space element has been changed.

The most important information from the stand-
point of increasing the flux of backscattering
instruments is displayed in Fig. 26. Here the peak
intensity (relative to that obtained for a crystal
velocity of zero) is shown as a function of speed for
mosaics of 1°, 30, 50, 10°, and 200. For mosaics of
30 or larger. the relative intensity increases from
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k. (A-')

Fig. 25. (a) Projection of a 3-d simulation of Bragg diffraction
from a stationary crystal with a mosaic of 100. The dots repre-
sent the initial and final wave vectors of the diffracted neutrons.
(b) Same view for a crystal speed of 250 m/s. Note that the
initial phase space volume has expanded and the final volume
has been "tilted" compared to the results obtained for the sta-
tionary crystal. (c) Crystal speed=O 500 m/s.

about 1 to a broad maximum, before decreasing
again. For the parameters chosen here, the maxi-
mum gain is about 6 which occurs for crystals with
a 100 mosaic moving at about 300 m/s. The results
for a 200 crystal show a smaller gain due to the
decrease in the reflectivity. The results for a crystal
having a mosaic of 10 appear somewhat unique.
Here the intensity increases linearly with the crys-
tal speed and has a relative value of only about 1/2
for a speed of 0. This is because a 10 mosaic is too
small when compared to the divergence of the inci-
dent beam.

After deflecting from the phase space trans-
former, the neutrons will travel approximately 2 m

4- "~ A 100 

0 -~~~~~~~~~~~~~~~1

/L'. .- 0' 30

0~~~~~1

DIC>

0 200 400 600 800
Crystal speed (m/s)

Fig. 26. Peak intensity relative to that obtained for a stationary
crystal. For a mosaic of 100, the phase space transform leads to
a gain of 6 for a crystal speed of 300 m/s. The dashed lines are
guides to the eye.

to the focussing monochromator crystals which will
be mounted on a Doppler drive. The Doppler
motion is necessary to vary the energy of the neu-
trons which impinge on the sample. The total range
of energies available is determined by the maxi-
mum velocity of the Doppler drive. The NIST in-
strument will have a variable energy range (up to a
maximum of - 100 p.eV). In order to obtain the
maximum flux, the neutrons will be focussed by the
monochromator onto the sample. However, Fig. 24
shows that the sample is slightly displaced from the
phase space transformer. Thus this results in a
small deviation of the backscattering condition. To
match this small worsening of the resolution, the
monochromator will not be perfect Si, but possibly
boron-doped Si. This will result in an increased
value of Ad/d (see Sec. 2) and therefore increased
intensity. A similar result could be achieved by
bowing the individual Si crystals, however this
results in a more Lorentzian resolution function
while the doped crystals result in a more Gaussian
lineshape [52]. Note that the level of boron in the
sample would not result in significant loss of inten-
sity due to absorption. A Geo., Si(.9 monochromator
which displaces the elastic peak by -15 peV will
also be available.

After reflecting from the monochromator, the
neutrons will pass back through the phase space
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transformer. This is possible because only half of
the chopper is covered with graphite while the
other half is transparent to neutrons. Furthermore,
the frequency of the chopper is chosen so that time
required for the neutrons to travel from the trans-
former to the monochromator and return is the
same as that for the crystals to move out of the
beam.

The neutrons are then scattered from the sample
to the large (-9 m2) bank of boron-doped Si ana-
lyzer crystals, which focus the neutrons back to the
detectors. The focussing and boron doping will be
chosen so that the energy resolution of the sec-
ondary spectrometer matches that of the primary
spectrometer. The detectors are electronically
gated so that they are off when neutrons are strik-
ing the sample thereby avoiding direct scattering of
neutrons from the sample to the detector. The en-
ergy transfer is ascertained by measuring the time
of arrival of the neutrons at the detector. Since the
total distance between the monochromator and
sample and the energy of the scattered neutrons
are known, the initial energy and therefore the en-
ergy transferred by the scattering from the sample
can be determined.

Because the detectors are near the incident
beam, the most important potential problem with
this design is background. If this problem cannot
be reduced to acceptable levels by reducing the
spread in incident energies, thereby limiting the
number of neutrons in the incident beam or by
improving the shielding of the detectors, the detec-
tors will have to be moved farther from the guide
by placing a deflector in the guide. This will reduce
the effectiveness of the phase space transformer so
this will only be done as a last resort. However,
contingency plans are in place for such an eventu-
ality.

3.2 CNRF Spin Echo Spectrometer

The main components of the CNRF-NSE instru-
ment which is still at a preliminary design stage
(Fig. 2) are described here. Neutrons are first
monochromated using a velocity selector and then
polarized using a supermirror polarizer. Polariza-
tion in transmission geometry is preferred for colli-
mation reasons (with reflection polarizers the
whole instrument has to be able to rotate around
the polarizer axis) although the transmission ge-
ometry is hampered by low polarization efficien-
cies. Next, the neutron spin direction is rotated
from the horizontal forward axis to a vertical direc-
tion (using a 7r/2 flipper) more suitable for use in

the first precession coil (solenoid) where the neu-
tron magnetic moment precesses in a vertical
plane. After the sample position, another preces-
sion coil makes the neutron spin precess in the
other direction. In order to flip the spin direction,
a 7r flipper is used between the two coils (just
before the sample). Next, another rw/2 flipper is re-
quired to rotate the magnetic moment from the ra-
dial direction to an axial one before reaching a spin
analyzer (array of supermirrors). Finally, neutrons
are detected in a position sensitive area detector.

In order for the NSE technique to work, the
"field integral" (i.e., the integral of the magnetic
field over the neutron path) must remain constant
before and after the sample (therefore creating an
"echo"). In practice, it is difficult to make exactly
identical main coils to be used before and after the
sample, so that besides the main coils, other
smaller "correcting" coils are also used. Correction
coils are added before the sample to optimize the
echo and around the sample to correct for the
earth magnetic field. No steel or magnetic materi-
als can be used in making the coils or close to the
instrument. Moreover, because very stable DC cur-
rent supplies are required, current stabilities of the
order of dI/I- 10-5 have to be achieved.

The CNRF-NSE spectrometer is in the prelimi-
nary design stage; detailed designs are planned to
start soon.

4. Summary

We have presented the operating principles of
two ultrahigh energy resolution neutron scattering
spectrometers, the backscattering spectrometer
and the spin echo spectrometer and have described
types of measurements which can be done with
these instruments at the Cold Neutron Research
Facility at NIST. We have also discussed the basic
design of the cold neutron backscattering spec-
trometer to be built in the CNRF. This information
will assist researchers who are considering ultra-
high energy resolution neutron scattering experi-
ments at NIST.
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